\(\int \frac {(d+e x)^4}{(c d^2+2 c d e x+c e^2 x^2)^2} \, dx\) [1010]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 5 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^2} \]

[Out]

x/c^2

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 5, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {27, 8} \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^2} \]

[In]

Int[(d + e*x)^4/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^2,x]

[Out]

x/c^2

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{c^2} \, dx \\ & = \frac {x}{c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 5, normalized size of antiderivative = 1.00 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^2} \]

[In]

Integrate[(d + e*x)^4/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^2,x]

[Out]

x/c^2

Maple [A] (verified)

Time = 2.80 (sec) , antiderivative size = 6, normalized size of antiderivative = 1.20

method result size
default \(\frac {x}{c^{2}}\) \(6\)
risch \(\frac {x}{c^{2}}\) \(6\)
norman \(\frac {\frac {e^{3} x^{4}}{c}+\frac {d^{3} x}{c}+\frac {3 e^{2} d \,x^{3}}{c}+\frac {3 e \,d^{2} x^{2}}{c}}{c \left (e x +d \right )^{3}}\) \(55\)

[In]

int((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^2,x,method=_RETURNVERBOSE)

[Out]

x/c^2

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 5, normalized size of antiderivative = 1.00 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^{2}} \]

[In]

integrate((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^2,x, algorithm="fricas")

[Out]

x/c^2

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 3, normalized size of antiderivative = 0.60 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^{2}} \]

[In]

integrate((e*x+d)**4/(c*e**2*x**2+2*c*d*e*x+c*d**2)**2,x)

[Out]

x/c**2

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 5, normalized size of antiderivative = 1.00 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^{2}} \]

[In]

integrate((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^2,x, algorithm="maxima")

[Out]

x/c^2

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 5, normalized size of antiderivative = 1.00 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^{2}} \]

[In]

integrate((e*x+d)^4/(c*e^2*x^2+2*c*d*e*x+c*d^2)^2,x, algorithm="giac")

[Out]

x/c^2

Mupad [B] (verification not implemented)

Time = 0.01 (sec) , antiderivative size = 5, normalized size of antiderivative = 1.00 \[ \int \frac {(d+e x)^4}{\left (c d^2+2 c d e x+c e^2 x^2\right )^2} \, dx=\frac {x}{c^2} \]

[In]

int((d + e*x)^4/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^2,x)

[Out]

x/c^2